The Creator’s Project released a new video, and our sugar printing, gelation, and blood pumping was featured in it! Trackback is to 3Ders.org The project goal is to unify artists and technologists and this video is focused on 3D Printing:
And I just got done with a talk at ScienceOnTap Philly! It was a truly excellent night! Special thanks to the Organizers and also the Hivers who came out or emailed in their support! You peeps are the best.
Here are some pics via the Twittersphere. Thanks to the photographers for posting!
I gave a talk too where I delved deeper into the science behind our work with RepRap for research in Regenerative Medicine and I made the case that open source is a philosophy, not a checkbox. Try not to get caught up in semantics of open vs. not-open (e.g. one could try to label Arduino as not an “open” platform since it has proprietary Atmel chips on the board). Instead, try to think of open projects as those in which you see people as collaborators (“open”), not customers (“closed”). We all have many things we can learn from each other, and who doesn’t want more collaborators to learn science together? Some interesting Q&A at the end too.
We are cosponsoring Cory’s Pirate Cinema event at IndyHall tonight, but since there’s not much for Hive76 to do, we decided to make him a present. Here’s a video of production last night:
That’s a 3D printed sugar head! Cory’s excited to see it in person. You should be too! Come to IndyHall 22N 3rd at 7pm tonight. Here’s the Anyvite link to RSVP. We’ll be bringing a boomcase for the PA too.
The gritty details: That’s a Baricuda extruder using air pressure to extrude molten sugar. Now I need to figure out how he can get it home to the UK in one piece.
Hive76 sure made the rounds at this year’s Maker Faire. With 2 tables in the 3D Printing Village, we had a steady stream of visitors both
days, ranging from Chocolateers, Digital Artists, to young children asking about 3D printing toys and parts for their projects. Discussion started about 10 minutes after we left Maker Faire for what to do next year. Check out the album for some quick snapshots of this year’s events including Karaoke, Thumb Wrestling, and of course, the occasional interview.
And here’s my talk about using RepRap 3D Printing for basic research in Regenerative Medicine. Thanks again to the awesome members of Hive76, especially Chris Thompson and Rob Vlacich.
Modified MendelMax #2 was born today. Isn’t she purty. This bot is gonna live at Hive76 for the forseeable future.
Thanks to all at Hive76 for help and support during this build, especially to Rich and Andy for hanging tough in the trenches, Chris and Brendan for troubleshooting and tools, and Morfin for extra supply bits.
We’ve got big plans for this bot. Stay tuned. And here’s a video of the first print!
I have been using OpenSCAD to design the objects I 3D print these days. Take for example my printed towel rack pictured here.
The design is parametric, which means that each aspect of the design is customizable. I had a specific diameter rod to use, so I entered that value into the code. If you would like to make your own towel rod, you could download the code that I wrote, and change the diameter of whatever rod you find to use. In this way the design can meet everyone’s needs with very little effort. This also means that sharing the design is much more valuable for others.
In this class you will learn the basics of OpenSCAD and reproduce a simple design from scratch. Some prior knowledge is required; basically that when you code, you need to spell things right and close brackets. OpenSCAD is fully cross platform and easy to install. Feel free to bring an idea for a 3D printed object, but make it practical. OpenSCAD does not excel at organic pretty things. Continue reading “OpenSCAD class August 4th: Learn parametric CAD for 3D printing”
I met Zach Hoeken Smith at one of my first Hive76 events. I donated to the pledge drive to buy a MakerBot Cupcake CNC and extruder. Once the drive was successful and 3DPO built, Hive76 held a workshop to learn how to design and print with SketchUp and the MakerBot. Our instructor was MakerBot co-founder Zach himself. Afterwards, everyone went out to West Philly for some Ethiopian food. It was a nice time. I haven’t seen him since, so I was surprised to hear from fellow member Jordan Miller that Zach had left Makerbot and was living in China. I reached out to Zach for a chat and here’s what I learned about my favorite hardware innovator. Continue reading “Exclusive: Zach Hoeken on leaving MakerBot and his future.”
One of our core members, Jordan Miller, has just published a scientific paper using RepRap 3D printing technology to engineer living tissues for regenerative medicine. I’ll give you a rundown of the science and a step-by-step guide of how Jordan got to this great spot in his career. Jordan is quick to point out that this is work that would not have been possible 5 years ago, or without the help of RepRap, Hive76, and this wonderful city of Philadelphia.
There are other labs around the world that are attempting what Jordan and the rest of the team at UPenn and MIT have been working towards. The end goal of regenerative medicine research is engineered tissues and replacement organs for treatment of human disease. As Science news says,
Imagine a world where if your heart or kidneys failed, you wouldn’t have to endure an agonizing, possibly futile wait for a donor whose organ your body might reject. Instead, a doctor would simply take cells from your own body and use them to “grow” you a new organ.
Other lines of research are attempting to 3D print directly with living cells and gel. These so-called “bioprinting” approaches involve loading cells and gel in syringes to be used as feedstock to create a structure from scratch. The problem is that healthy liver cells, for example, usually die of starvation (lack of nutrients) and suffocation (lack of oxygen) while enduring the slow 3D printing process.
Enter Jordan and his innovation: since vasculature provides the lifeblood to resident cells, why not focus on the vasculature first?
Jordan and the rest of the research team at UPenn and MIT have developed a new way to create vasculature for living tissues. This 4 step process involves: 1) 3D printing a network of sugar filaments, 2) surrounding it with living cells in a gel, 3) dissolving away the sugar to leave behind a vascular network for 4) the delivery of nutrients and oxygen. He accomplished this with a custom built 3D printer, extruder and control software.
Here’s a step-by-step of Jordan’s many year process:
Get a crazy idea to link sugar and vasculature when comparing the interior of a 3D print to a capillary network.
You can read the Penn press release about this awesome science, an overview from Science News, or the full paper. A more detailed post about the hardware used in this project will follow and soon you’ll be able to make your own sugar extruder. (It prints chocolate too!)